Options
All
  • Public
  • Public/Protected
  • All
Menu

Non exhaustive list of publications related to DDM:

  1. Kaven, J. O., Hickman, S. H., Davatzes, N. C., & Mutlu, O. (2012). Linear complementarity formulation for 3D frictional sliding problems. Computational Geosciences, 16(3), 613-624.
  2. Maerten, F., Resor, P., Pollard, D., & Maerten, L. (2005). Inverting for slip on three-dimensional fault surfaces using angular dislocations. Bulletin of the Seismological Society of America, 95(5), 1654-1665.
  3. Maerten, F., & Maerten, L. (2008). Iterative 3d bem solver on complex faults geometry using angular dislocation approach in heterogeneous, isotropic elastic whole or halfspace. Brebbia, editor, Boundary Elements and other Mesh Reduction Methods, 30, 201-208.
  4. Maerten, F. (2010). Geomechanics to solve geological structure issues: forward, inverse and restoration modeling (Doctoral dissertation, UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC).
  5. Maerten, F., Maerten, L., & Cooke, M. (2010). Solving 3D boundary element problems using constrained iterative approach. Computational Geosciences, 14(4), 551-564.
  6. Maerten, F., Maerten, L., & Pollard, D. D. (2014). iBem3D, a three-dimensional iterative boundary element method using angular dislocations for modeling geologic structures. Computers & Geosciences, 72, 1-17.
  7. Maerten, F., Madden, E. H., Pollard, D. D., & Maerten, L. (2016). Incorporating fault mechanics into inversions of aftershock data for the regional remote stress, with application to the 1992 Landers, California earthquake. Tectonophysics, 674, 52-64.
  8. Maerten, L., Maerten, F., Lejri, M., & Gillespie, P. (2016). Geomechanical paleostress inversion using fracture data. Journal of structural Geology, 89, 197-213.
  9. Maerten, F., Maerten, L., (2017). Stress Distribution Around Complex Salt Structures : a New Approach Using Fast 3D Boundary Element Method. 2017 Ring Meeting, pages 12--15, ASGA
  10. Maerten, L., Maerten, F., & Lejri, M. (2018). Along fault friction and fluid pressure effects on the spatial distribution of fault-related fractures. Journal of Structural Geology, 108, 198-212.
  11. Maerten, F., Maerten, L., R. Plateaux & Cornard, P. (2022). Joint inversion of tectonic stress and magma pressures using dyke trajectories. Geological Magazine
  12. Nikkhoo, M., & Walter, T. R. (2015). Triangular dislocation: an analytical, artefact-free solution. Geophysical Journal International, 201(2), 1119-1141.
  13. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 75(4), 1135-1154.
  14. Thomas A. L., (1994).Poly3D : a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth's crust. Stanford M.S. thesis, Department of Geology
  15. Soliva, R., Maerten, F., Petit, J. P., & Auzias, V. (2010). Field evidences for the role of static friction on fracture orientation in extensional relays along strike-slip faults: comparison with photoelasticity and 3-D numerical modeling. Journal of Structural Geology, 32(11), 1721-1731.
  16. Soliva, R., Maerten, F., Maerten, L., & Mattila, J. (2019). Fault slip envelope: a new parametric investigation tool for fault slip based on geomechanics and 3-D fault geometry. Solid Earth, 10(4), 1141-1154.
  17. Jeyakumaran, M., Rudnicki, J. W., & Keer, L. M. (1992). Modeling slip zones with triangular dislocation elements. Bulletin of the Seismological Society of America, 82(5), 2153-2169.